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Differences in experimental results for surface gravity wave phase speeds obtained by 
cross spectra and slope-height spectra are compared. It is shown that, for a simple 
two-dimensional model containing both dispersive and non-dispersive waves, the 
observed differences can be explained readily. The slope-height technique measures 
a weighted average of the wavenumber squared; for frequencies sufficiently large 
compared with the dominant frequency, the computed phase-speed variation with 
frequency is representative of the wave having the larger wavenumber - the disper- 
sive wave. For the cross-spectral method, it is shown that the small-probe-separation 
assumption usually employed is not valid for frequencies much larger than the 
dominant frequency, except a t  the singular point where both waves have exactly 
equal spectral densities and the phase function represents an average of the two 
modes. For all other cases, the phase function approaches that of the wave having 
the larger spectral density, and essentially ignores the presence of the other wave, 
even if both modes are relatively close in their contributions to the total spectral 
density. 

1. Introduction 
Recent laboratory experiments studying the phase velocities of surface gravity 

waves have yielded apparently contradictory results. Cross-spectral techniques em- 
ployed by Ramamonjiarisoa ( 1974) and Ramamonjiarisoa & Mollo-Christensen ( 1979) 
indicate that, for frequencies up to four times the dominant frequency, the Fourier 
components of the wave field are non-dispersive, all travelling with approximately 
the phase speed of the fundamental. This contrasts with the results obtained by 
Huang et al. (1981) who employed slope-height spectral measurements, where, except 
for the harmonics of the fundamental frequency, velocities follow the classical linear 
dispersion relation. 

An analysis to explain these differences was carried out by Mollo-Christensen & 
Ramamonjiarisoa (1981). They concluded that the presence of mono-dispersive and 
doubly dispersive wave fields could not explain the differences between the experi- 
mental results, but that the presence of continuously multi-dispersive waves is capable 
of accounting for the observed differences. In order to obtain a simplified expression 
for the phase function in their analysis of the cross-spectral technique, they made the 
approximation of a small separation distance between the two probes employed in 
obtaining the spectra measurements. As pointed out by Huang (1980), however, the 
experimental conditions of Ramamonjiarisoa & Mollo-Christensen ( 1979) are 



242 J .  J .  Dudis 

consistent with the small-separation approximation only for wave frequencies much 
smaller than the fundamental frequencies observed in their experiments. Evaluation 
and interpretation of the phase function under this approximation for wave fre- 
quencies in excess of the dominant frequency are unjustified. 

The present analysis will evaluate both the slope-height- and the cross-spectra- 
determined phase velocities under the simplified model of a unidirectional wave 
train containing a fixed ratio of the spectral frequency densities of dispersive to non- 
dispersive waves. The behaviour of the phase function both with frequency and with 
the ratio of dispersive to non-dispersive waves, and the applicability of the small- 
separation approximation will be examined. The analysis will permit a physical inter- 
pretation of what is being measured by both slope-height and cross-spectra experi- 
ments under the idealized conditions of the model. 

2. Spectral model and interpretation of experimental results 

given by 
We consider a unidirectional wave field whose wavenumber-frequency spectrum is 

X(k,n) = llrN(n)6 (1) 

where k is the magnitude of wavenumber k, n is the wave frequency, Co is the phase 
speed of the non-dispersive wave, g is the acceleration due to gravity and 6 is the 
Dirac delta function. The frequency spectra $N and $D represent, respectively, the 
non-dispersive and the dispersive contributions to the total frequency spectrum glr(n). 

2. I. Gloss-spectral method 
I n  the cross-spectrum analysis, the phase function $(r, n) is defined by 

1 sin (k . r) X(k, n) dk 

I cos (k . r) X(k, n) dk' 
t an4  = 

where r is the probe-separation displacement vector. The phase velocity C$(n) is 
calculated from the relation 

C, (n)  = rn/#. (3) 
For a sufficiently small probe-separation distance and a generalized wave field, 

we have 

where & is the spectrally averaged wavenumber parallel to the separation vector r. 
In this case C, = n/i ,  and the cross-spectra-defined phase velocity coincides with the 
usual definition of phase velocity based upon a spectrally averaged wavenumber. 

However, for k . r not small there is no apriori way of interpreting the cross-spectra- 
defined phase velocity, and here we resort to the idealized unidirectional wave field 
given by ( 1 ) : 

m rn2 
$N sin- + $,,sin - 

CO 9 
rn rn2' $,,- cos- + $D cos - 
co g 

t an4  = (4) 



Phase-velocity naeasurements of wind-generated waves 243 

Let no and k,  be the frequency and wavenumber a t  which the phase velocities of the 
dispersive and non-dispersive wave are equal. Then k, = no/%, = ng/g, and (4) be- 
comes 

( 5 )  
sin ae + R sin a2e 
cos ae + R cos a2e' tan$ = 

where the non-dimensional quantities a,  e and R are given by 

Simplified solutions for q5 and C,/C, can be obtained for three limiting values of R. 
For R -f 0, 

corresponding to a purely non-dispersive wave. I n  the limit R -+ co, 
q5-+a~ and C+/C,-+l, (8) 

$ -+ a2e and C,/C, -+ l / a .  (9) 

This solution represents the purely dispersive wave where the phase speed 

C, = g/n = (g/n,) (n/no)-l = C,a-l. 

At R = 1, employing the trigonometric identities for the sum of the sine and cosine 
of two angles, the exact solutions simplify to 

q5 = *ae( 1 + a )  and C,/C, = 2/( 1 + a). (10) 

The phase function and consequently the reciprocal phase velocity both assume the 
average values of the non-dispersive and dispersive limits given in (8) and (9). 

Approximate solutions to (5) and (7) exist for ae < 1 and a2e < 1. This small-probe- 
separation approximation was assumed valid in the analysis of Mollo-Christensen & 
Ramainon jiarisoa ( 198 1 ). For this case, one finds 

C l + R  and d=- ae( 1 + aR) '= l + R  C, l+aR '  

Here the phase function and the reciprocal phase velocity are weighted averages of 
the non-dispersive and dispersive solutions. This solution is exact for all a a t  R = 1 
where (10) and (1 I )  are identical. At all non-zero R and for sufficiently large a,  the 
phase speed given by (1 1) possesses an a-l dependence, suggestive of dispersive waves. 
Mollo-Christensen & Ramamonjiarisoa ( 1981 ) employed basically the same reasoning 
and for a doubly dispersive model with R = 1 and a = 2 , 3  concluded that there should 
be little difference between the measured phase velocities determined by cross-spectra 
or slope-height techniques. As noted, however, Huang ( 1950) discussed the limitations 
in employing the sniall-probe-separation approximation. For experimental conditions 
representative of cross-spectra determinations of phase velocity (cf. Mollo-Christensen 
& Ramamonjiarisoa 1978, figures 1 and 7; Ramamonjiarisoa & Mollo-Christensen 
1979, figure I) ,  we take fo = n,/Zrr = 2 Hz and r = 10 em, corresponding to c = 1.6. 
Clearly, for freqneneies greater than the dominant (a > l ) ,  the validity of the small- 
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FIGURE 1. Phase function $ for E = 1.6 and R = 1. UE and a*€ correspond 

to non-dispersive and dispersive waves, respectively. 
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FIQURE 2. Phase function $ arid small separation solution $a  for E = 1.6 and Is = 2. 
is the dispersive solution. 
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FIGURE 3. Phase function # and small separation solution # 8  for E = 1.6 and R = 0.5. 
UE is the non-dispersive solution. 

a 

separation approximation as, a2s 4 1, except in the special case R = 1, appears 
doubtful. 

I n  figure 1, we plot 4 vs. a for s = 1.6 and R = 1 as given by (5) or (10). The phase 
function, as noted, is merely the average of the dispersive solution a2s and the non- 
dispersive solution a€. 

I n  figure 2,  the exact values for 4, given by ( 5 ) ,  and the small-separation approxi- 
mation values fis, given by (1 l ) ,  are plotted for R = 2 (the spectral density of disper- 
sive waves being twice that of non-dispersive waves) and c = 1.6. The exact solution 
closely follows the approximate solution for a < 1.5. With a > 2 the exact solution 
is practically coincident with the dispersive solution 61%. 

The reversed situation, the spectral density of non-dispersive waves being twice 
that of dispersive waves, R = 0.5, is plotted in figure 3, also for s = 1-6. Once again 
the exact and approximate solutions, 4 and fi,, are close for a ,< 1.5, but diverge for 
a > 2 where the exact solution oscillates about the non-dispersive solution ax, The 
phase function is dominated by the non-dispersive waves; the only apparent effect 
of the dispersive waves is to cause the oscillatory behaviour. 

Similar computations involving the phase function given in ( 5 )  were made for 
E = 1-6 and R in the neighbourhood of 1. It was found that (5) is singular a t  R = 1 
where the small-separation approximation is valid for all a. For R < 1, the exact 
solution diverges from the approximate solution a t  a N” 2 and oscillates about the 
non-dispersive solution ac. The magnitude of the oscillation increases without limit 
as R + I-, the phase function even becoming negative for R sufficiently close to  unity. 
With R > 1, the exact solution again diverges from the approximate solution for 
a z 2 and oscillates about dispersive solution a2c. The oscillation amplitude grows 
without limit as R --f 1+. 
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Either as a guide to establishing experimental conditions or as an aid in inter- 
preting experimental results, it is desirable to have an estimate of the frequency which 
separates that portion of the phase function which represents an average behaviour 
of the dispersive and non-dispersive modes from that portion which has a bimodal 
behaviour representing only the dominant mode. This can be obtained as follows. 
Letting R = 1 +6, ( 5 )  can be written 

tan &a€( 1 + a )  + 6 sin a%/( cos ae + cos a2e) 
t a n 4  = 

1 + 6 cos OI%/(COS a€ + cos a%) 
* 

For moderate values of S, the right-hand side of (12) can be expanded in a Taylqr 
series about 6 = 0. Clearly, the expansion becomes invalid where cos ae + cos a2e = 0. 
The lowest value of a for which this occurs is determined by 

a% = a€ + 71. (13) 

It is reasonable to expect that the value of a satisfying (13), where the Taylor 
expansion of (12) becomes invalid, corresponds to the critical frequency a t  which the 
phase function changes character. The solution of (13) is given by 

(14) a, = &[l+ ( 1  +4n/~)+].  

This result implies that the critical frequency depends only on the parameter E and 
not on the composition of the wave field as determined by R. This was confirmed by 
the numerical solutions discussed above. For e = 1-6 and 0.1, (14) gives a, = 1-99 and 
6.12, respectively. Numerical computations give approximately the same values for 
the frequencies a t  which the phase function departs from the small-separation approxi- 
mation. For E < 1, (14) gives a:e = 7~ as the condition by which the critical frequency 
is determined. 

2.2. Slope-height method 
If S(k, n) is the wave-slope spectrum, it can be shown that 

S(k, n) dk = 1 k2X(k ,  n) dk. (15) 

Huang et al. (1981) define a slope-height-determined phase velocity C, by 

1 X(k, n) dk 
Cg = n2 1 S(k, n)  dk * 

Combining this with (1 5) gives 
C; = n2/2, 

where is the spectral average of the wavenumber squared. Thus, for a generalized 
wave field, the height-slope-computed phase velocity is most heavily weighted by t'he 
small-scale spectral components. 

Now, employing the spectrum given by (1) yields 

For the slope-height measurement of this idealized spectrum, the square of the de- 
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FIGURE 4. Phase velocities C4 and C ,  determined from cross-spectra and slope-height spectra, 
respectively. C / C ,  = 1 for non-dispersive waves and for dispersive waves. 

fined wavenumber is the weighted average of the squares of the wavenumbers of the 
dispersive and non-dispersive component's. I n  terms of a and R (the result is inde- 
pendent of E since the slope-height measurements are made at the same point) we have 

This is equivalent to the result obtained by Mollo-Christensen & Ramamonjiarisoa 
( 1 9 8 1 )  for a more general doubly dispersive wave field. 

I n  figure 4, we have plotted Co/Co 'us. a for R = 0.5. Also included are C$/C,-, deter- 
mined from ( 5 )  and ( 7 )  with E = 1.6, and the purely dispersive solution (R + co in 
(2)) having C/Co = a-l. From this simple example of a wave field where the spectral 
density of non-dispersive waves is twice that of dispersive waves, cross-spectra- and 
slope-height-determined phase velocities are quite different. For sufficiently large 
frequencies, the cross-spectra measurements are influenced primarily by the wave 
having the dominant spectral density, in this example the non-dispersive wave, and 
the slope-height measurement's primarily by the wave having the larger wavenumber, 
the dispersive wave. 

3. Discussion 
The results of the preceding analysis indicate that a simple mode1 of a wave field 

consisting of both non-dispersive and classically dispersive waves is capable of resolving 
the differences in phase velocity determined from cross spectra and slope-height 
spectra. The apparent contradiction between this result and that obtained by Mollo- 
Christensen & Ramamonjiarisoa (1981) is consequence of the fact t,hat they employed 
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the small-probe-separation approximation in their analysis of the phase function. 
The present calculations indicate that, for conditions representative of cross-spectra 
experiments, this approximation breaks down for frequencies much in excess of the 
dominant wave frequency. 

For all of the above computations i t  has been assumed that R(n), the ratio of the 
spectral densities of dispersive to non-dispersive waves, is constant a t  all frequencies. 
I n  light of the bimodal behaviour of 45, excluding the singular point R = I, this has 
little effect in interpreting the results of cross-spectra measurements in terms of the 
present model - they appear representative of wave fields possessing a majority of 
non-dispersive waves, R < 1. Unfortunately this R-insensitivity of $ makes it difficult 
to use the cross-spectral technique to give a more quantitative estimate of wave field 
composition. The present resultsindicate that, for R < 1 and sufficiently close to unity, 
the phase function oscillates about that of the non-dispersive wave. Whether the 
oscillations apparent in the experimentally det,ermined phase functions of Ramamon- 
jiarisoa (1974) and Ramamonjiarisoa & Mollo-Christensen (1979) are related to this 
$-dependence on R should be considered. More definite estimates of the wave-field 
composition might be obtained. 

Alternatively, i t  appears that more detailed information on wave-field composition 
could be obtained from cross-spectral experiments operated under conditions of 
considerably smaller values of 6 ,  corresponding to a reduced probe-separation distance 
and/or a reduced peak-wave frequency. This would delay the frequency at  which the 
phase function diverges from the small-separation values which represent a weighted 
average between non-dispersive and dispersive waves. For example, as noted, for 
E = 0.1, (14) gives a, = 6.12. This would result in a phase function representing the 
average composition over the entire frequency range of interest. 

In  the slope-height experiment by Huang et al. (1981), the directly computed phase 
velocities were generally found to exceed the theoretically predicted classical values. 
The differences were attributed to wind-generated surface drift currents, and, by 
matching their experimentally obtained phase velocities to the theoretical linear 
values, they determined surface drift velocities. 

Current results indicate that the presence of non-dispersive waves could have a 
similar effect in raising the slope-height-computed phase-velocity curve above the 
theoretical predictions. Simultaneous measurements of the mean surface drift 
current and slope-height spectra, coupled with the above analysis, should give more 
quant,itative insight into the composition of the observed wave field. 

The author expresses appreciation to Norden Huang for numerous discussions on 
wave measurements. This work was supported by NASA under Research Grant no. 
NSG 602.5. 
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